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ABSTRACT
We present Aleatora, an early-stage framework for building compo-
sitions from lazy, effectful streams. Aleatora’s streams, which may
be combined by sequential, parallel, or functional composition, are
well-suited to expressing interactive and aleatoric musical composi-
tions. Aleatora includes a networking module which aids in writing
compositions for the Internet of Sounds using network data sources
such as OSC, external APIs, and Internet sound repositories (e.g.
Freesound). This paper describes the design and implementation of
Aleatora and demonstrates how it can facilitate weaving external
input sources, such as network streams, into compositions.
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•Applied computing→ Sound andmusic computing; •Human-
centered computing → Interaction design.

KEYWORDS
Composition, audio synthesis, music programming languages, stream-
based programming, Internet of Sounds
ACM Reference Format:
Ian Clester and Jason Freeman. 2021. Composing the Network with Streams.
In Audio Mostly 2021 (AM ’21), September 1–3, 2021, virtual/Trento, Italy.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3478384.3478416

1 INTRODUCTION
Computers are fundamentally more powerful than preceding music
playback technologies. Beyond replaying a fixed recording, repeat-
ing the exact waveform that was recorded by a microphone or put
together in a studio, computers can replay the steps necessary to
realize a composition. This suggests an expansion of the notion of
composition, from a recorded waveform or a sequence of notes to
a program that generates musical output—a generator for “a field
of possibilities” rather than a single fixed outcome. [5]

Composers are still grappling with the possibilities. Since the
dawn of digital computers, much progress has been made in the de-
sign and implementation of digital audio workstations (DAWs) and
audio programming languages. However, these tools are essentially
based around the timeline and signal-flow graph: abstractions that
can each only solve part of the puzzle.
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In this paper, we propose Aleatora, a framework for musical
composition built on an unusual abstraction: lazy, effectful streams.
Streams represent a repeatable chain of computation, and they
provide an elegant way for the composer to perform sequential,
parallel, and functional composition in a consistent way with both
fixed and dynamic materials. We briefly describe Aleatora’s design
and implementation and demonstrate how it simplifies working
with network sources, enabling the composer to weave them in to
a structured composition and “compose the network.”

1.1 Related Work
Recent work on the Internet of Sounds (or the related areas of the
Internet of Audio Things [10] and Internet of Musical Things [11])
has focused on the instrument: Internet-enabled smart instruments
that combine sensors, computational capabilities, and network con-
nectivity [8]. For example, [9] describes a Smart Guitar capable of
networking with other smart devices during performance. External
influences (e.g. an app on a phone or streaming audio) can affect
the guitar’s output, and the performer’s input can have external
effects (e.g. controlling a DAW or a VR environment).

Our work is complementary, approaching from the opposite
direction: we focus on how to effectively realize Internet-enabled
compositions. Aleatora addresses the challenge of “composing the
network,” as articulated by Turchet et. al. in [11] — the need for
“new forms of composition” for the Internet of Sounds, with tools for
the composer “to support and control distributed, heterogeneous
capabilities,” and compositions capable of “recall and reproduction.”

In the domain of audio programming languages, there are a
variety of tools available. However, most of these1 use the core
abstraction of a signal flow graph, with a separate language or
interface for imperative code to construct and manipulate the graph.
Our work differs from most in this area in its core abstraction of
streams and the operations they support.2 This abstraction obviates
the need for strict separations between score and orchestra and
synthesis and control, and it makes it easier for the composer to
compose horizontally as well as vertically. (This point is elaborated
in section 2.1.)

Nyquist [4] is Aleatora’s closest conceptual relative. Aleatora
shares with Nyquist several core features, including an interactive
environment based on a dynamic language with a REPL,3 a lack
of distinction between score and orchestra, sounds as first-class
values, streams (“signals” in Nyquist) as potentially-infinite lazy
linked-lists, and support for arbitrarily mixed sample rates.

1e.g. Max/MSP, Pure Data, SuperCollider, Csound, ChucK, JavaScript with Web Audio
2SuperCollider also has streams for lazy, potentially-infinite sequences, but they are
only used for control (not synthesis) and cannot be replayed from arbitrary points.
(The latter point also distinguishes Aleatora streams from Python generators.)
3That is, a read-eval-print-loop, or interactive language shell
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Figure 1: Types of composition and the abstractions that sup-
port them.

That said, our work differs from Nyquist [3] in a few essential
ways. Aleatora supports composing with external events (e.g. TCP
data, OSC orWebSocket messages, tweets) by conceptualizing them
as (“impure” or side-effectful) streams of data, treated the same as
any other stream. It does not memoize streams by default, so the
computationmay take a different path and yield a different sequence
the next time through (due to side-effects). It provides convenient
syntax for common operations by overloading operators in the host
language. And it is implemented as a library for a popular general-
purpose language rather than taking the form of a domain-specific
Lisp dialect. (And, it must be said, Aleatora is not yet as mature
and complete as Nyquist and does not deal with some issues such
as block computation, logical start and stop times, and behavioral
abstraction for context-dependent transformations.4)

In computer science and programming languages generally, there
is important related work on the stream abstraction. The “Streams”
section of Abelson and Sussman’s Structure and Interpretation of
Computer Programs [1] is a classic reference. The ideas are refined
in SRFI-41 [2], a common extension to the Scheme programming
language. In both [1] and [2], streams are memoized, and mixing
streams with side effects is discouraged. This is similar to Haskell’s
native List type, which is naturally lazy and prohibits side effects.
In contrast, Haskell’s streaming library 5 offers a streaming ab-
straction that elegantly combines laziness and effects. streaming
makes use of Haskell’s robust static type system and offers com-
plexity beyond what we consider here, but it shares Aleatora’s core
abstraction and has served as a design inspiration.

2 DESIGN & IMPLEMENTATION
2.1 Types of Composition
First, we elaborate on the three kinds of composition Aleatora
supports. As illustrated in Figure 1, these are sequential, parallel,
and functional composition. Many systems support two of these
well, and may have some support for the third tacked on, but first-
class support for all three is rare.

4Although the latter can be attained in part through operator/method overloading.
5https://hackage.haskell.org/package/streaming

Sequential composition entails concatenating two processes,
such that the combined output is the output of the first followed
by the output of the second. In general-purpose languages, this is
often the ; or newline operator. Musically, sequential composition
corresponds to playing one thing after another, splicing tape, plac-
ing one clip to the right of another in a DAW, or writing one note
after another in Western music notation.

Parallel composition entails running two processes at the same
time.6 In Pd or MSP, the user can compose two patches in parallel
by connecting them both to the dac~; as in hardware, things run
in parallel by default. Musically, parallel composition corresponds
to playing two things at the same time, placing one clip on top of
another (on another track) in the DAW, or writing one note on top
of another (as in a chord, independent voices, or multiple staves) in
Western music notation.

Functional composition entails transforming the output of one
process with another process. This is akin to linking two guitar
pedals via 1/4" cable, connecting objects in Pd or MSP, calling
AudioNode.connect() in the WebAudio API, or using the => oper-
ator on UGens in ChucK. In Western music, this is represented by
notation that affects a performer’s interpretation (dynamics, instruc-
tions like “pizzicato,” “vibrato,” etc.) or carried out by the composer
manually (as in sequencing a melodic fragment by transposing it).

Each pair of two kinds of composition corresponds to a famil-
iar abstraction. Parallel/functional composition is the essence of
the signal flow graph. It is well-supported by audio programming
languages and is a natural feature of circuits (and thus is the core
of analog and modular synthesis). Sequential/parallel composition
is the essence of the timeline (with horizontal time and vertical
layers), and it is well-supported in multitrack tape and the DAW. Se-
quential/functional composition is the essence of the linear pipeline
(the operators ; and | in Unix shells, as in CARL [7]).

This correspondence also implies that each of these abstractions
is missing something. The timeline is missing functional composi-
tion, so DAWs augment it by supporting plugins—something outside
of the timeline. The signal flow graph is missing sequential compo-
sition, so most audio programming languages augment it with an
imperative language that can manipulate the graph. The imperative
code can be sequenced, but this does not concatenate the output; the
execution of the audio graph is mostly outside the user’s control.

2.2 Streams
Streams support all three kinds of composition. A stream represents
a sequence of values generated on-demand. Streams operate by
returning a tuple of (next element, rest of stream) or a Return value,
which indicates that there are no further values.7 Streams do not
generally mutate when they are called, so they can be played back
from any earlier point (assuming the user kept a reference to it).
Since streams are not memoized by default, the second playback
may produce a different sequence of results than the first.

The ability to end may appear to be an additional complication of
streams, as compared to signals, which do not end but may dwindle

6Note that this does not require that the processes run in parallel (hardware parallelism),
just that both can contribute to the same samples in the output.
7A Return object can hold a value, which is important for implementing certain
operations such as a lazy split. In terms of streaming, this is essential for implementing
the monadic bind (»=).
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to zero (silence). However, the notion of ending is inherent in the
idea of sequential composition: for that to happen after this, “after”
must have some meaning, so this must come to an end. By support-
ing endings as part of the abstraction (rather than as something
limited to special-purpose objects like buffers or grid sequencers),
compositions can be composed at any level. That is, given com-
positions A and B (which may represent two musical notes, two
phrases, two sections, or two movements), one can always concate-
nate them to produce a new composition. In Aleatora, streams may
be sequentially composed with the concatenation operator » (as in
a » b). The slice operator (as in a[:10.0]) is also important, as it
enables the composer to convert an infinite stream into a finite one.

Since streams are an augmentation of signals, they inherit sup-
port for parallel and functional composition. Streams may be com-
posed in parallel via binary operators such as + (sum two streams
element-wise; audio mixing) and * (multiply two streams element-
wise; amplitude modulation/enveloping). Parallel composition al-
ways implies traversing multiple streams together. 8

Streams support functional composition via function call. The
user can write a function that takes a stream as an argument and
produces a new stream. The new stream may advance the given
stream as needed to generate its own output. For example, fm_osc()
takes a stream of frequencies as an argument. Each time the next
sample is requested from the outer stream, fm_osc advances the
inner stream to obtain the next frequency and updates its phase—
transforming a stream of frequencies into a stream of frequency
modulation. Aside from this general method, Aleatora also provides
.map(), .filter(), and .scan() methods, higher-order functions
common in functional programming.

2.3 Implementation
Aleatora is implemented as a library for Python. We chose to im-
plement it as a library so that users can benefit from their existing
knowledge of a general-purpose language and from the rich ecosys-
tem of the language. This choice also pairs well with Aleatora’s
lack of separation between control and synthesis (which allows the
composer to work at any level of abstraction without switching
languages), as it allows the composer to also work with the entirety
of the system (audio, video, files, networking, etc.) without switch-
ing languages. Also, this choice saved the authors the trouble of
re-implementing (and documenting) an entire standard library’s
worth of modules which are not directly related to the problem of
interest but may nonetheless be required by users.

We chose Python in particular because it is a popular, high-level,
dynamic, and “impure” (side-effects can happen anywhere), all of
which are desirable for our use case: the composer is typically more
concerned with quickly trying out ideas and integrating disparate
sources than carefully tracking mutation and I/O in a large system.
Conveniently, it also has operator overloading (allowing us to re-
purpose operators like », +, and slicing), an excellent and mature
ecosystem, and a fast JIT implementation (PyPy).

8The core method of parallel composition is Stream.zip(), which produces a stream
of tuples with one element from each stream. Other parallel operators are built on top
of this, with parallel composition followed by functional composition.

2.4 Usage
This section presents brief, annotated examples in Aleatora (with
import statements omitted), focusing on core features and stream
manipulations. Examples with networking are presented in the next
section. The results can be heard at youtu.be/MJwjYW1jEc0.

tone = osc(440) # Endless stream: 440 Hz tone
short_tone = tone[:1.0] # End after the first second
play(short_tone) # Play stream of samples live
# Parallel composition:
power_chord = (osc(440)+osc(660)+osc(880))/3 # sum
amp_mod = osc(440) * (1 + osc(660))/2 # multiply
# Sequential composition:
tune = osc(440)[:1.0] >> osc(660)[:1.0] # slice, concat
# Functional composition:
# `tune` has a pop in the middle from the discontinuity.
# For a smooth transition, we can instead use `fm_osc`,
# which turns a stream of frequencies into one of samples:
tune = fm_osc(const(440)[:1.0] >> const(660)[:1.0])
# `rand` is an endless stream of random values from 0 to 1
# We can use it to make a stream of pitches:
pitches = (rand*12+60).map(int)
freqs = pitches.map(m2f) # then frequencies
chromatic = fm_osc(freqs.hold(1.0)) # then samples
# Load audio clips as streams:
a = to_stream(wav.load("sample_a.wav"))
b = to_stream(wav.load("sample_b.wav"))
# Splice `b` into the middle of `a`:
spliced = a[:1.0].bind(lambda rest_of_a: b >> rest_of_a)
# Advance `b` at a variable rate, as in varispeed:
wobbly = resample(b, 1+0.3*osc(1))
# Randomly resolves to stream `a` or `b` each play:
chance = flip(a, b)
# Make it into an infinite stream, repeatedly choosing:
chances = chance.cycle()
# Play live audio input, plus a drone, forever:
play(input_stream + osc(40))
# Play a clip, then live input (10 seconds), then a clip.
play(a >> input_stream[:10.0] >> b)
# Play live MIDI input via a sine wave instrument.
play(midi.mono_instrument(midi.input_stream()))

The discussion so far has mostly been about streams of samples,
with the assumption that the computer will ultimately “play” the
piece (possibly with external input from audience members or
performers). However, streams may yield any data type, and the
composer can write their piece to generate whatever representation
makes sense. For example, one could use Aleatora to compose a
piece that yields a stream of MIDI events, which are then rendered
as notation for live performers, as in the pieces described in [6].

2.5 Networking
Streams arewell-suited to sources such as files, devices, and network
connections, which are exposed by operating systems as streams of
bytes or sequences of packets/events. In this section, we describe the
networking module, which exposes network streams as Aleatora
streams and facilitates their integration into compositions.

2.5.1 Blocking and Non-Blocking Streams. One issue is that such
streams often “block”: it may take a long time to compute the next
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element as the system waits for the next packet to come in. A
direct dependence between a blocking I/O stream and the output
stream will cause buffer underruns. Some APIs offer non-blocking
options;9 as these are not always available or convenient, Aleatora
offers a general mechanism, unblock() for converting a stream
from blocking to nonblocking by running it in a separate thread. If
values are pulled from the nonblocking stream before new values
in the underlying blocking stream are ready, unblock() can return
a “filler” value or repeat the last valid value.

2.5.2 Levels of Networking. Much as Aleatora allows the composer
to work at different levels of abstractions in audio (streams may
represent samples, MIDI events, etc.), the networkingmodule allows
the composer to work at different levels in the network stack.

For example, byte_stream() yields a stream of bytes over a TCP
connection, and packet_stream() yields a stream of incoming
UDP datagrams; at a higher level, osc_stream() returns a stream
of OSC messages; beyond that, it is easy to use other modules (e.g.
urllib, or third-party modules for Twitter, Wikipedia, Freesound,
etc.) with Aleatora, as will demonstrated shortly.

Network streams mesh well with Aleatora. byte_stream() ends
when there are no more bytes in the TCP stream, so it’s trivial
to move ahead in a composition when the connection closes—
automatically replacing the defunct parts of the audio graph that
relied on the connection. This goes both ways: the UDP & OSC
streams are infinite (as the protocols are not connection-oriented)
but can easily be ended from above (e.g. to stop after a particular
message or amount of time).

This may not be enough to “compose the network” if it were only
one-way. But, in addition to being influenced by external streams,
Aleatora streams can also have side-effects that may be used to
compose the behavior of other devices on a network. Examples of
this usage, as well as the functions described earlier, are given in
the annotated listing below (Aleatora imports omitted for brevity):

import wikipedia # 3rd-party module
# This stream speaks endless Wikipedia article titles.
wiki = repeat(wikipedia.random).map(speech).join()
# We can control this at either level: text or audio.
# For example, this stops after ten titles:
wiki = repeat(wikipedia.random)[:10].map(speech).join()
# whereas this stops after ten samples:
wiki = repeat(wikipedia.random).map(speech).join()[:10]
# This reverses the titles before saying them (as text):
wiki = (repeat(wikipedia.random)

.map(lambda t: t[::-1]).map(speech).join())
# while this reverses titles after saying them (as audio):
wiki = (repeat(wikipedia.random)

.map(speech).map(Stream.reverse).join())
from cryptocompare import get_price # 3rd-party
# Stream of Ethereum prices in USD:
b = repeat(lambda: get_price('ETH','USD')['ETH']['USD'])
# Stream of ether prices played as frequencies:
e = fm_osc(net.unblock(b, filler=0, hold=True))
# Stream of frequencies via OSC over UDP (port 8000):
freqs = (net.osc_stream()

.filter(lambda m: m.address == b'/freq')

.map(lambda m: m.args[0]))

9For example, using MSG_DONTWAIT with recv() for Linux sockets.

held_freqs = net.unblock(freqs, filler=0, hold=True)
# Stream of frequencies, externally controlled by OSC:
controlled = fm_osc(held_freqs)
# Define a stream function: switch between a and b regularly.
def switch(a, b, dur):

return a[:dur].bind(lambda rest: switch(b, rest, dur))
# Semi-controlled; switch from controlled to random freqs.
rand_freqs = (rand*1000).map(int)
semi = fm_osc(switch(held_freqs, rand_freqs, 1.0))
# For each frequency generated, send it to a device over OSC.
client = OSCClient('10.0.0.2', 8000)
effectful_freqs = rand_freqs.each(

lambda f: client.send_message(b'/freq', [f]))
# Generate, play, and send out frequencies once per second.
play(fm_osc(effectful_freqs.hold(1.0)))

3 FUTUREWORK
Looking ahead, we plan to build out more networking support, par-
ticularly for compositions involving many simultaneous network
streams—for example, a system for providing one stream for each
active WebSocket connection in an audience participation piece.
We also intend to refine Aleatora’s implementation, improve per-
formance, and evaluate the feasibility of running computational
compositions written with Aleatora in the browser. Lastly, we hope
to evaluate Aleatora with composers and livecoders, to better un-
derstand how it may be used in practice and how it might fit into a
more complete compositional environment.

The source code for the version of Aleatora described in this
paper is available at github.com/ijc8/aleatora/tree/am21. The latest
version is available at github.com/ijc8/aleatora.
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