
ScoreCard: Generative music programs as QR codes

Ian Clester
Georgia Institute of Technology
Atlanta, Georgia, United States

ijc@gatech.edu

Jason Freeman
Georgia Institute of Technology
Atlanta, Georgia, United States
jason.freeman@gatech.edu

ABSTRACT
QR codes are typically used to store small pieces of metadata
(URLs, product codes, contact information) which serve
as links or pointers to larger resources (websites, product
databases, people). In this work, we explore the possibility
of repurposing QR codes to store complete, self-contained
generative music pieces, and the resulting technical and mu-
sical challenges and opportunities. We introduce a web ap-
plication called ScoreCard, which enables users to scan and
play QR codes (e.g. from “printed programs” on physical
cards or from other users’ screens) containing generative
music pieces in the form of WebAssembly programs. We
present several musical examples and pieces written for or
ported to this medium.

1 Introduction
Music is distributed in many mediums. Scores capture no-
tation on paper; analog media such as vinyl records and cas-
sette tapes transmute sound from ephemeral pressure waves
into more durable forms. Digital formats instead store audio
as bitstreams which can be readily copied and shared, at the
cost of the physicality and visibility of analog formats.

QR (Quick Response) codes serve as a bridge between
the physical and digital. Per de Seta [10], QR codes were
developed by DensoWave for use in the automotive industry,
but they have since become ubiquitous in media, advertising,
and everyday transactions. In these contexts, QR codes are
frequently deployed as a better way to direct an audience to
a digital destination. Instead of reading a URL written as
text and manually entering it, one simply scans a code.

Used in this way, QR codes serve as real-world
hyperlinks—printed anchor tags readable by a user’s smart-
phone. Unfortunately, this usage makes QR codes suscepti-
ble to link rot, and a QR code that worked yesterday may
be a broken link tomorrow. Like a dangling pointer, the QR
code remains readable, but the content it pointed to is lost.

QR codes are often used to share music in the form of
links to streaming services or band websites. But sharing
a link to music is not quite the same as sharing the music
itself. As mentioned, links break, and even when they don’t,

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2024, March 15–17, 2024, West Lafayette, IN, USA.

© 2024 Copyright held by the owner/author(s).

Figure 1: ScoreCard playing a tiny generative music program
(scanned from a QR code) in a mobile browser

access is mediated by whoever operates the linked site, and
access is contingent on the service provider’s terms.

In this work, we employ QR codes as a physical/digital
medium for music storage. Rather than using a QR code
to store a link to a piece of generative music, we propose
to store the piece itself in the QR code. In this way, as
long as the code can be scanned, the piece survives and
may be played. We demonstrate this idea via ScoreCard,1

a web application for playing generative music pieces from
QR codes repurposed to serve as musical “score cards”. We
discuss the design and implementation of ScoreCard, the
unique affordances and constraints of our approach, and the
development of a few ScoreCard pieces as case studies.

1ScoreCard is available at https://ijc8.me/s, and its source
code is available at https://github.com/ijc8/scorecard.

https://ijc8.me/s
https://github.com/ijc8/scorecard


2 Design
In ScoreCard, the piece is the program is the notation. The
visual representation of a piece, as a QR code, contains the
executable representation of a piece, as a WebAssembly bi-
nary, which encompasses all possible audio representations
of a piece in its execution paths. This is roughly what we
mean by “self-contained”.

Of course, every piece needs a player. A vinyl record,
though a “self-contained” musical representation, is mute
without a turntable and speaker. Even a music box, which
contains both“score”(a tiny piano roll) and“orchestra”(tiny
tines), requires something to turn the crank and someone to
hear the song. Nothing is truly self-contained; a statically-
linked binary still depends on an OS, and even bare-metal
embedded firmware still depends on the ‘metal’ !

Nonetheless, some things are more self-contained than
others, and in ScoreCard we aim for pieces that are highly
self-contained. In particular, the QR code contains an en-
tire WebAssembly binary. That binary is expected to export
up to two functions (process() and optionally setup()),2

and no imports are allowed. This means that there is no
additional JavaScript glue code (as typically generated by
Emscripten or Rust’s wasm-bindgen), and indeed, not even
WASI imports. There is no I/O at all except through the
two exported functions. Rather than storing or generat-
ing symbolic data (such as ‘notes’ or ‘events’) that must be
further interpreted by a player, ScoreCard programs are re-
sponsible for generating audio directly: like a music box,
they contain both score and orchestra, but unlike MUSIC-N
languages [20], the question of how (or whether) to separate
score and orchestra, or control and synthesis, is left up to
the composer/programmer.

Furthermore, we avoid additional dependencies which
might be used to cram larger executables into the QR code
at the expense of player complexity, such as gzip or Brotli.
For the same reason, we avoid structured binary schemes
such as BSON or protobuf, which could be used to pack in
additional metadata with the WebAssembly. (We do per-
mit some metadata to optionally be included in the Wasm
binary itself, as described in §5.1.)

In addition to self-containment, we also design ScoreCard
for ease of use. The QR codes that encode the executable
double as valid URLs that open the program in the Score-
Card web app when scanned by a smartphone. (The way
this is accomplished is described in §4.2.) ScoreCard pieces
may be distributed on paper (such as stickers or physical
“score cards”), or they may spread from person-to-person
by pointing one user’s camera at another’s screen. For sim-
plicity, we restrict ScoreCard programs to a single QR code
(instead of permitting them to consist of arbitrarily many
QR codes scanned in sequence). This sharply limits the size
of ScoreCard programs, which serves as a technical challenge
and an aesthetic constraint, as elaborated in §4.3.

2To simplify things further (with the aim of reducing code
size), we expect process() to return the next sample (rather
than filling a block of samples), and we assume a fixed sam-
ple rate of 44100 and format of 32-bit floats. If a piece
exports setup(), we pass it a 32-bit seed for e.g. initializ-
ing a PRNG. To save space, the actual export names are
single characters (p for process, etc.), but we use the long
names in discussion and source code for readability; build
tools handle the renaming.

3 Related Work
Our work on ScoreCard is inspired by work on fantasy con-
soles, modern game platforms that adopt retro aesthetics
and intentional technical constraints. Particularly relevant
are Francesco Cottone’s Rewtro [8] which supports loading
games from “QR-Carts” (paper game cartridges consisting
of three QR codes), and Bruno Garcia’s WASM-4 [12], in
which games take the form of WebAssembly binaries. Com-
pared to Rewtro, ScoreCard aims for greater simplicity, both
in specification and in usage. Simple specification means
that ScoreCard pieces have both more responsibility (as they
must implement synthesis) and more freedom (as they are
not limited to preset sounds). Simple usage means that users
only need to scan a single QR code, and that code also serves
as a link to the ScoreCard player (at the expense of some
executable space, as discussed in §4.2).3 But, as in Rewtro,
the use of QR codes means that anyone can produce their
own score cards using a printer, and music can be “pirated”
using a copy machine—or otherwise shared any other way
that people share images.

ScoreCard draws inspiration from the notion of “printed
programs” as in collaborative computing environments Dy-
namicland [13] and Folk Computer [7]. In these environ-
ments, programs are invoked by pulling out a piece of paper,
which contains both the human-readable program source
code and a computer-readable marker (such as an AprilTag)
that points to the corresponding program in a database. In
contrast, in ScoreCard the computer-readable QR code in-
stead contains the entire program, and the program is self-
contained rather than fitting in as a piece of a larger system.

ScoreCard is informed by our previous work on Alter-
nator, a general-purpose generative music player [5]. Like
ScoreCard, Alternator features a web-based player for gen-
erative music bundles that may incorporate WebAssembly.
In Alternator, these bundles may be arbitrarily large and
include as many assets as needed, possibly including an en-
tire language runtime (such as Csound, ChucK, libpd, or
CPython). Thus, any ScoreCard piece may easily be turned
into an Alternator bundle, but not vice-versa: score cards
are a more constrained and exacting medium for generative
music. The two projects share a conception of a genera-
tive music piece as an audio-generating program, but di-
verge in philosophy. ScoreCard turns away from the famil-
iar aesthetic of Alternator (which seeks to emulate stream-
ing music players with regard to convenience and usability,
implicitly presenting music as something infinitely available
on-demand) towards the perhaps quixotic approach of stor-
ing music on physical cards, with a corresponding emphasis
on visibility, tangibility, and personal interaction. To that
end, ScoreCard eschews the notion of a central repository for
musical works, instead offering a decentralized model of mu-
sical creation and propagation that bears more resemblance
to the cassette era than the streaming era.

ScoreCard also participates in a lively tradition of size-
constrained creative coding. Examples include Peter Sa-
lomonsen’s work on “WebAssembly Music” [18], bytebeat
(in which musical pieces consist of very short code expres-
sions) [14], sctweets [16], code golfing, and of course the
demoscene, which is well-known for packing a lot of art into
little programs (‘demos’) using every possible trick [3].

3In Rewtro, the QR codes are purely binary data, and thus
cannot be read directly by smartphone camera apps.



Figure 2: An implementation of Terry Riley’s In C in C,
compiled to WebAssembly, encoded in a QR code.

The way we have gone about writing ScoreCard pieces
is informed by our previous work on Aleatora [4], in which
everything is a stream, from samples on up. Writing in C,
we lack the luxury of Python’s generators, but we use Simon
Tatham’s technique [19] to fake coroutines to similar effect
as described in §4.3.

Finally, we note an affinity with other projects that repur-
pose utilitarian supply-chain technologies to creative ends.
Examples include Electronicos Fantastico!’s Barcoder [11],
which transforms ordinary barcode scanners into electronic
instruments, and the first author’s work repurposing RFID
tags as input devices for interactive systems [6].

4 Implementation
4.1 The ScoreCard Player
The ScoreCard player takes the form of a web application,
as shown in Figure 1. It can play score cards passed in via
query parameter (as in the case of URLs from QR codes),
as well as scan codes directly from the browser.4 The query
parameter is decoded into a binary blob, which is passed
to an AudioWorklet where it is loaded as a WebAssembly
module and instantiated. The player also allows for rudi-
mentary creation and modification of score cards by writing
WebAssembly (in text format) directly; we intend to expand
this functionality in the future.

The “Listen” tab, used for playback, displays the score
card on the phone screen (re-encoded with the player’s
URL). Showing the QR code means that score cards can
be passed around by scanning one person’s screen with an-
other person’s camera. The interface also displays the title
(if provided) and size of the loaded piece, as well as the cur-
rent playback time. Playback controls include play/pause

4The player also supports dragging in .wasm files directly,
which is convenient for score card development.

and reset. Resetting generates a new random seed. The
user can also edit the seed directly, or lock the seed by tap-
ping the die icon. Once locked, the seed survives resets and
goes into the QR code along with the program, so that an
interesting seed may also be shared by scanning.

4.2 Encoding Issues
Storing a generative music program in a QR code presents
several challenges, the most obvious of which is size. A QR
code (in its largest configuration, with 177x177 pixels and
minimal error correction) can contain at most 2,953 bytes.
Thus, from the outset, we are limited to encoding binaries
smaller than 3 kilobytes.

However, there are further constraints. Given the design
requirement that our codes be readable by standard read-
ers (such as those built in to smartphone camera apps), we
cannot just store a binary blob. Ideally, the user should be
able to scan the code from their camera app, and then tap
once to open the generative music program in the web-based
ScoreCard player. Accomplishing this kind of flow requires
encoding a URL which in turn encodes the WebAssembly
executable.5

Naively, we could encode the executable using base64,
which is commonly employed on the web for wrapping
binary data in a text package, resulting in a URL like
https://ijc8.me/s?c=aGVsbG8gd29ybGQh... Base64 en-
codes data as a sequence 6-bit Base64 digits; represented
as an ASCII or UTF-8 string, it uses four bytes of output
data per three bytes of input data, incurring an overhead
of 33.3%. Thus, we lose 25% of our storage space for the
executable, leaving us with at most 2,214 bytes even before
we subtract the space for the fixed part of the URL.

Fortunately, the QR code specification affords some tricks.
In particular, QR codes store data as a sequence of seg-
ments, each of which can be encoded in one of four modes.
In byte mode, each byte takes (unsurprisingly) 8 bits, but
other modes include numeric mode (which encodes the ten
decimal digits, taking 3 1

3
bits per digit) and alphanumeric

mode (which encodes the 26 uppercase letters, 10 digits, and
9 symbols, using 5 1

2
bits per character).6 By choosing the

mode carefully, we can store the program in a way that is
both readable as a valid URL and more efficient than en-
coding a base64 string in byte mode.

For example, we could simply encode the entire Wasm
blob as a long string of digits. As noted by Adam Langely
[15], the QR code scheme of encoding a digit in 3 1

3
bits (3

digits in 10 bits) is log2 10/
10
3

≈ 99.66% efficient—far better
than the 75% efficiency offered by base64. Indeed, we can
store up to 2,943 binary bytes this way, losing just 10 bytes
to encoding overhead.

Unfortunately, this scheme is foiled by the quirks of
real readers, as we discovered while testing. On iOS,
scanning a QR code that results in a long URL (>4000

5We also considered the possibility of storing the link and
the binary as separate segments, so that the code could be
scanned outside the player to get the player URL and inside
the player to load the binary. Unfortunately, this approach is
sensitive to reader implementation details: on Android, the
URL scans, and the binary data is replaced with “Unknown
encoding”, which is workable. But iOS refuses to scan such
a code.
6Note that this mode is unfortunately not sufficient for en-
coding base64 strings due to the lack of lowercase letters.



Base Max size (bytes) String length Efficiency ▽
10 2943 7088 99.66%
43 2913 4295 98.65%
64 2214 2952 74.97%
16 2148 4296 72.74%

Table 1: Efficiency comparison of encoding schemes for em-
bedding a binary in a QR code such that it can be scanned
by smartphone camera apps as a URL query parameter.

characters) may, in some circumstances, silently drop
trailing components; a code that scans successfully as
https://ijc8.me/s?c=10639365947... on Android may
scan as https://ijc8.me/s?c on iOS, discarding the exe-
cutable entirely. Thus, there is an additional surprise con-
straint to keep the URL relatively short.

As a result, ScoreCard employs a base43 encoding.
Why such as unusual base? We use the 45 charac-
ters supported by the QR spec’s alphanumeric mode,
minus the two (% and space) that are URL-unsafe in
query parameters, leaving us with the 43-character alpha-
bet 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ$*+-./: and
a resulting efficiency of log2 43/5.5 ≈ 98.66%. This is not
quite as good as digit encoding (we lose 30 more bytes of exe-
cutable space) but still much better than base64 (we get 699
bytes back), and the resulting URLs scan more reliably on
iOS. We present a comparison of different encoding schemes
in Table 1.

All told, after the base43 encoding and the URL prefix
(https://ijc8.me/s?c=), we are left with 2,892 bytes for
the executable, sacrificing about 2% of our storage capacity
in exchange for codes that scan in ordinary QR code read-
ers. Note that, although the QR code decodes to a valid
URL for usability as described in §2, the URL may be still
decoded by a ScoreCard player hosted on a different domain
(or indeed a standalone player or progressive web app used
without Internet), since it encodes the entire program in a
self-contained manner.

4.3 Musical/Technical Issues
With the executable encoding scheme settled, we are left
with challenge of building a small binary in the first place.
Given just under three kilobytes, how much music can we
make?

This question is complicated by the fact that the program
needs to not only encode musical material, but also synthe-
size it as audio. Calling sinf(), for example, immediately
adds 5,600 bytes to the size of the executable; even powf()
(useful for implementing a typical “MIDI to frequency” func-
tion) adds 578.7 Similarly, heap allocation is a death sen-
tence. Calling malloc() pulls in an allocator, blowing up
the binary by 4,022 bytes. These issues necessitate custom
implementations or alternate designs.

We also have the question of language. Using any lan-
guage that comes with a large runtime is impossible, as the
runtime must also fit in < 3kB. This immediately eliminates
most modern computer music languages8 and interpreted

7These are the implementation sizes frommusl, a lightweight
implementation of the C standard library, which is already
much smaller than typical implementations such as glibc.
8With the possible exception of FAUST, which is compiled;
we intend to investigate this possibility in the future.

or bytecode-interpreted languages.9 The general issue with
such languages in size-constrained environments is that the
runtime contains code for everything the language can do,
even if the actual program uses only a fraction of it; a pro-
gram that does nothing is still the size of the entire runtime.
Paying for unused features is not viable in such a constrained
medium, so this effectively limits us to compiled languages.

Thus, we’re left with compiled languages with small
or non-existent runtimes that can compile to WebAssem-
bly, such as C, C++, Zig, Rust, and AssemblyScript.
In our examples, we stick with C, using Emscripten [21]
(with --no-entry) to generate a WebAssembly binary sans
JavaScript glue code.

Given the choice of C, we must then write music in it. In
order to concisely express music from the level of samples
on up, we adapt Simon Tatham’s work [19] on simulating
coroutines in C (with modifications to avoid heap allocation)
in order to attain an experience similar to using generators
in languages such as Python or JavaScript, such that we
may yield a sequence of values from a function, suspend-
ing and resuming control flow without explicitly writing a
state machine. These generator-esque macros allow us to
write relatively straightforward code despite the fact that
the ScoreCard player is driving generation from the out-
side (by repeatedly calling process()). They create the ap-
pearance that the piece’s code drives the music by yielding
samples as they are generated, and they enable the com-
poser/programmer to describe individual musical processes
and compose them in sequence, in parallel, or in function
(e.g. applying effects), as demonstrated in our examples.

5 Examples

5.1 Writing simple examples from scratch
Let’s begin with a trivial example, a noise generator, to
demonstrate all the parts of a ScoreCard piece/program:

1 #include <stdlib.h>
2

3 const char title[] = "noise example";
4

5 void setup(unsigned int seed) {
6 srand(seed);
7 }
8

9 float process() {
10 return rand() / (float)RAND_MAX * 2 - 1;
11 }

Both title (which is exported as metadata for the player
to display) and setup() are optional and may be omitted
to save space. The only essential ingredient in a ScoreCard
program is process(), as demonstrated in the next example,

9Even tiny runtimes designed for embedded use are gener-
ally too large: MicroPython takes well over 100kB, and the
NanoVM for Java still takes 8kB.



Source code

#include <stdlib.h>
#include <inttypes.h>
void setup(uint32_t seed) {

srand(seed);
}
float process() {

return rand() / (float)
RAND_MAX * 2 - 1;

}

WebAssembly

(module
(func (export "s")

(param i32)
i32.const 1024
local.get 0
i32.const 1
i32.sub
i64.extend_i32_u

...

QR code Playback

Compile Encode Scan

Figure 3: Progression of a ScoreCard piece, from composition/programming to playback in a browser

which plays a little tune using a bytebeat [14] expression.

1 const char title[] = "bytebeat example";
2 int sample = 0;
3 float process() {
4 int t = sample++ / 5;
5 // Bytebeat expression:
6 signed char x = t * (42 & t >> 10);
7 return (float)x / 128;
8 }

5.2 deck.h: a library for composing cards
In order to avoid rewriting the same basic constructs for each
piece, we have created a header file, deck.h, which contains
a number of common building blocks and utilities, such as
oscillators, envelopes, filters, and random(ness) functions.
The following example demonstrates some of these:

1 #include "deck.h"
2

3 card_title("Quirky FM ramps");
4

5 float t, dur, start, end, phase;
6 float mod_depth, mod_phase, mod_ratio;
7 float dur_options[] = {0.25, 0.5, 1.0, 2.0, 4.0};
8

9 void setup(unsigned int seed) {
10 srand(seed);
11 dur = choice(dur_options);
12 start = uniform(0, 1000);
13 end = uniform(0, 1000);
14 mod_ratio = uniform(1, 100);
15 mod_depth = uniform(0, 1);
16 }
17

18 float process() {
19 if (t > dur) return 0;
20 float freq = ramp(t, dur, start, end);
21 float mod_freq = freq / mod_ratio;
22 freq *= 1+mod_depth*sqr(&mod_phase, mod_freq);
23 float out = sqr(&phase, freq) * env(t, dur);
24 t += dt;
25 return out;
26 }

deck.h also includes our adapted version of Simon
Tatham’s coroutine macros [19]. These provide an easy way

to “invert” the apparent control from the player (which calls
process() repeatedly to generate each sample) to the pro-
gram, which in turn makes it easier to manage complexity
as pieces gain structural layers, as in the following example:

1 #include "deck.h"
2

3 card_title("lick spiral");
4

5 // A familiar tune
6 struct { char pitch; char dur; } notes[] = {
7 {62, 1}, {64, 1}, {65, 1}, {67, 1},
8 {64, 2}, {60, 1}, {62, 1},
9 };

10

11 float process() {
12 static float phases[2];
13 static float freq, dur, t = 0;
14 static int offset = 0, i;
15 gen_begin;
16 for (;; offset = (offset + 1) % 12) {
17 for (i = 0; i < SIZEOF(notes); i++) {
18 freq = m2f(notes[i].pitch + offset);
19 dur = notes[i].dur * 0.25;
20 for (; t < dur; t += dt) {
21 // Shephard scale shenanigans
22 float p = t / dur;
23 p = (i + p) / SIZEOF(notes);
24 p = (offset + p) / 12;
25 float x = p*tri(&phases[0],freq/2)
26 + (1-p)*tri(&phases[1],freq);
27 // `yield()` suspends the execution
28 // of `process()`, picking up from
29 // where we left off next time.
30 yield(x * ad(t, dur/8, dur*7/8));
31 }
32 // Subtract `dur` (instead of resetting
33 // `t` to 0) to avoid accumulating
34 // error from truncating dur/dt.
35 t -= dur;
36 }
37 }
38 gen_end(0);
39 }

In Appendix A, we include a more complete example: an
implementation of Terry Riley’s In C (appropriately named
in.c). Figure 2 contains the resulting score card. Because In



C is intended to be played by multiple performers working
their way through the same score semi-independently, in.c
is an example of a score card that, although self-contained
in a technical sense, benefits from being played at the same
time as other cards (or other instances of the same card) on
other devices.

6 Future Work
We plan to expand on the rudimentary card-creation func-
tionality in the player (which currently allows users to write
WebAssembly by hand in text format). A small compiler for
bytebeat expressions or perhaps even Tidal-esque pattern
notation [17] would enable users to create cards by editing
short snippets on their phones. A web-based card creator
with a built-in compiler would enable users to write cards
in C (or other languages) without first installing a compiler
toolchain. Either development would provide alternatives to
writing WebAssembly, which seems more suitable for ‘hack-
ing’ existing cards than composing cards from scratch.

An easy extension of ScoreCard would allow pieces to take
in audio input, enabling audio effects to be stored on QR
codes.10 Such an extension raises the possibility of chain-
ing together ScoreCards in a modular fashion, treating each
individual card as a synthesizer module or unit generator.
In this work, we prefer to focus on the simplicity of Score-
Card and the feasibility of self-contained musical programs,
but the prospect of modular, connectable ScoreCards is a
tempting direction for future exploration.

We note that some cards, such as in.c (in Appendix A),
are already intended to be combined (possibly with them-
selves) by being played simultaneously, forming a compound
piece realized by multiple participants. In the future, we
would like to explore the possibility of automatic synchro-
nization between devices, as in Brian Barth’s Your Terms of
Service [2]. (This is more complex in our use-case because
the devices may be playing different parts.)

Another intriguing direction involves expanding on the vi-
sual aspect of ScoreCard. Building on techniques described
by Russ Cox [9], it may be possible to visibly embed ‘al-
bum art’ in score cards by including carefully-chosen blobs
in WebAssembly binaries.11 Another possibility is highlight-
ing activated (read, written, executed) parts of the binary in
the QR code itself, while the program is running. This would
likely require instrumenting a WebAssembly interpreter (for-
going the browser’s fast, built-in VM) or dynamically patch-
ing WebAssembly binaries themselves, as in Jack Baker’s
work on hacking WebAssembly games [1]. Neither approach
is easy, but such a visualization might do a great deal to
make the process feel more lively.

Finally, we intend to continue exploring how much can be
done with just a little code. We believe ScoreCard presents
a delightful opportunity to explore the expressive (and com-
pressive) potential of computer music, because any tech-
nique that “cheats” by depending on large pieces of recorded
or rendered data (assets such as samples or even MIDI files)
simply won’t fit.

10This could be accomplished in a backwards-compatible way
by checking the signature of the exported process() func-
tion.

11This idea is complicated by the base43 encoding step but
may be possible nonetheless.

7 Conclusion
In this paper, we presented ScoreCard, a system for repur-
posing QR codes as a musical medium by creating codes
storing entire WebAssembly generative music programs. We
discussed the challenges and affordances of this unusual
medium in the context of usability and composition, and
we believe they make ScoreCard a unique and playful way
to create and share generative music.

In cities, we often find stickers with QR codes that link to
an artist’s presence on a streaming service or social media—
ushering people in to centralized musical or social reposi-
tories operated by corporations where every play is tracked
and stored away as fodder for algorithms. ScoreCard turns
this relationship on its head, inviting people to leave visible
traces encoding musical spaces in physical places, sharing
complete pieces in a decentralized manner, using the web
to promote access rather than surveillance and paper for
sharing rather than advertising.

8 References

[1] J. Baker. Hacking WebAssembly Games with Binary
Instrumentation. https://doi.org/10.5446/48379, 2019.
Series: DEF CON 27 Published: DEF CON.

[2] B. Barth and J. van Tubergen. Your Terms of Service:
Interactive Audio Installation.
https://zenodo.org/records/6770101, June 2022.

[3] A. Carlsson. The Forgotten Pioneers of Creative
Hacking and Social Networking – Introducing the
Demoscene. In Proceedings of the Third International
Conference on the Histories of Media Art, Science and
Technology, Re:live Media Art Histories, 2009.

[4] I. Clester and J. Freeman. Composing the Network
with Streams. In Audio Mostly 2021, pages 196–199.
Association for Computing Machinery, New York, NY,
USA, 2021.

[5] I. Clester and J. Freeman. Alternator: A
General-Purpose Generative Music Player. In
Proceedings of the International Web Audio
Conference, WAC ’22, Cannes, France, June 2022.

[6] I. J. Clester. RFID localization for interactive systems.
Thesis, Massachusetts Institute of Technology, 2020.

[7] F. Computer. Folk Computer. https://folk.computer/.

[8] F. Cottone. Rewtro. https://www.kesiev.com/rewtro/,
2019.

[9] R. Cox. QArt Codes.
https://research.swtch.com/qart, Apr. 2012.

[10] G. de Seta. QR code: The global making of an
infrastructural gateway. Global Media and China,
8(3):362–380, Sept. 2023. Publisher: SAGE
Publications Ltd.

[11] E. FANTASTICOS! Barcoder.
https://www.electronicosfantasticos.com/,https://
www.electronicosfantasticos.com/en/works/barcoder/,
Mar. 2021.

[12] B. Garcia. WASM-4. https://wasm4.org/, 2021.

[13] D. M. Group. Dynamicland.
https://dynamicland.org/.

[14] V.-M. Heikkilä. Discovering novel computer music
techniques by exploring the space of short computer
programs. http://arxiv.org/abs/1112.1368, Dec. 2011.

https://doi.org/10.5446/48379
https://zenodo.org/records/6770101
https://folk.computer/
https://www.kesiev.com/rewtro/
https://research.swtch.com/qart
https://www.electronicosfantasticos.com/, https://www.electronicosfantasticos.com/en/works/barcoder/
https://www.electronicosfantasticos.com/, https://www.electronicosfantasticos.com/en/works/barcoder/
https://wasm4.org/
https://dynamicland.org/
http://arxiv.org/abs/1112.1368


arXiv:1112.1368 [cs].

[15] A. Langley. Efficient QR codes. https://www.
imperialviolet.org/2021/08/26/qrencoding.html, Aug.
2021.

[16] F. M. Martins and J. H. Padovani. Be Brief:
Convergences and Possibilities of Live-Coding and
sctweeting. In Proceedings of the 7th International
Conference on Live Coding (ICLC2023), Utrecht,
Netherlands, Apr. 2023.

[17] A. McLean and G. Wiggins. Tidal–Pattern Language
for the Live Coding of Music. In Proceedings of the
Sound and Music Computing Conference, SMC ’10,
pages 331–334, Barcelona, Spain, July 2010.

[18] P. Salomonsen. WebAssembly Music.
https://zenodo.org/records/6772287, June 2022.

[19] S. Tatham. Coroutines in C. https://www.chiark.
greenend.org.uk/˜sgtatham/coroutines.html, 2000.

[20] G. Wang. A History of Programming and Music. In
J. d’Escrivan and N. Collins, editors, The Cambridge
Companion to Electronic Music, Cambridge
Companions to Music, pages 58–85. Cambridge
University Press, Cambridge, 2 edition, 2017.

[21] A. Zakai. Emscripten: an LLVM-to-JavaScript
compiler. In Proceedings of the ACM international
conference companion on Object oriented programming
systems languages and applications companion,
OOPSLA ’11, pages 301–312, New York, NY, USA,
Oct. 2011. Association for Computing Machinery.

https://www.imperialviolet.org/2021/08/26/qrencoding.html
https://www.imperialviolet.org/2021/08/26/qrencoding.html
https://zenodo.org/records/6772287
https://www.chiark.greenend.org.uk/~sgtatham/coroutines.html
https://www.chiark.greenend.org.uk/~sgtatham/coroutines.html


APPENDIX
A Extended Example: In C in C

1 #include "deck.h"
2 #include "in.h" // Contains `notes` (array of note data) and `fragments` (lengths of sections in `notes`).
3 card_title("in.c");
4 setup_rand;
5

6 float play_pulse() {
7 const int freq = m2f(84);
8 const float dur = 0.25f;
9 static float sqr_phase, t = 0;

10 gen_begin;
11 for (;;) {
12 for (; t < dur; t += dt) {
13 yield(env(t, dur) * sqr(&sqr_phase, freq));
14 }
15 t -= dur;
16 }
17 gen_end(0);
18 }
19

20 float play_score() {
21 const float grace_note_frac = 0.05f;
22 const float amplitudes[] = {0.44f, 0.66f, 1.0f};
23 const osc_func osc_funcs[] = {sqr, saw, tri};
24 static osc_func osc;
25 static int num_reps, rep, fragment_index, fragment_start, fragment_end, note_index;
26 static float osc_phase, freq, dur, amp, t = 0;
27 gen_begin;
28 osc = choice(osc_funcs);
29 for (fragment_index = 0; fragment_index < SIZEOF(fragments); fragment_index++) {
30 fragment_start = note_index;
31 fragment_end = note_index + fragments[fragment_index];
32 num_reps = rand() % 4 + 3; // Determine how many times to repeat this fragment before moving on.
33 for (rep = 0; rep < num_reps; rep++) {
34 for (note_index = fragment_start; note_index < fragment_end; note_index++) {
35 dur = notes[note_index].dur / 4.0f;
36 if (notes[note_index].pitch == 0) { // Rest: skip this note.
37 sleep(t, dur);
38 continue;
39 }
40 freq = m2f(notes[note_index].pitch);
41 if (dur == 0) { // Grace note
42 dur = (notes[note_index + 1].dur / 4.0f) * grace_note_frac;
43 } else if (note_index > 0 && notes[note_index - 1].dur == 0) { // Last note was a grace note
44 dur *= (1 - grace_note_frac);
45 }
46 amp = amplitudes[notes[note_index].velocity - 1];
47 for (; t < dur; t += dt) { // Synthesize the note!
48 yield(env(t, dur) * osc(&osc_phase, freq) * amp);
49 }
50 t -= dur;
51 }
52 }
53 }
54 gen_end(0);
55 }
56

57 float process() {
58 return (play_pulse() + play_score()*3)/4;
59 }


	Introduction
	Design
	Related Work
	Implementation
	The ScoreCard Player
	Encoding Issues
	Musical/Technical Issues

	Examples
	Writing simple examples from scratch
	deck.h: a library for composing cards

	Future Work
	Conclusion
	References
	Extended Example: In C in C

